

Journal of Computational Science and Intelligent Technologies

eISSN: 2582-9041

DOI: 10.53409/MNAA/JCSIT/e202102030108

1 | P a g e

Type: Research Article

Classification of Bugs using Machine Learning Algorithms

Aishwarya Jayagopal1 , Kaushik R2, Arun Krishnan3, Ramesh Nalla4, and Suresh Ruttala4

1Independent Researcher, Palakkad, Kerala, India
2Independent Researcher, Bengaluru, Karnataka, India

3Independent Researcher, Kozhikode, Kerala, India
4Independent Researcher, Hyderabad, Telangana, India

*Corresponding Author: Aishwarya Jayagopal. Email: jayagopalaishwarya@gmail.com

Received: 21 March 2020; Accepted: 10 July 2021

Abstract: DevOps is a method used to automate the process between the

development team and the IT team through which they can develop, test,

and release their software. Bugs during this stage slow the entire release

cycle. To overcome this, Machine Learning and Deep Learning Algorithms

are used to analyze and arrive at the possible cause of the bug. This reduces

the dependency on the developers and, in turn, speeds up the release cycle.

The bug dataset is fed to various classification algorithms like CNN,

Random Forest, Decision Tree, SVM, and Naïve Bayes for bug

classification. Based on the experimental results, it can be observed that

Convolutional Neural Networks, a deep learning technique, outperformed

all the other approaches used. Furthermore, it was observed that Naïve

Bayes, a probabilistic classifier generally preferred for text classification,

performed poorly with the bug dataset used in this paper. Ensemble

methods like a Decision tree and Random Forest performed better on this

dataset.

Keywords: DevOps; Machine Learning; Deep Learning; CNN; bugs

1 Introduction

The DevOps paradigm has gained much popularity in the Information Technology world today since it

enables teams to quickly deliver stable, reliable products. It ensures swift release cycles, thereby improving

the maintenance and upgrade timelines. DevOps combines agile with automation and continuous delivery,

promoting efficiency between development and operations teams and providing faster innovations and

superior deliverables to customers and businesses. Bug Tracking Systems (BTS) play an important role

here as it emphasizes better quality faster, thus rendering better service and customer satisfaction. The BTS

systems allow for efficient communication and collaboration between the reporters of the bugs and the

respective feature developers by posting comments and attachments, giving more information on the errors,

and promoting speedy resolution. In addition, these systems have features that provide detailed information

about team members’ efforts to analyze and solve a bug reported, statistics on the number of bugs reported,

and many more items to debug.

However, even with the combination of the above two aspects, that of DevOps and BTS, there are still

gaps in smooth product delivery. The main cause is that the bug counts for large enterprise projects are

generally high, and sorting and contacting the respective developers for a fix is still manual. This increases

the resolution time for each bug raised. Since there is human intervention in the bug assignment and bug

https://orcid.org/0000-0002-5658-0724

 JCSIT, 2021, vol.02, no.03

2 | P a g e

fixes process, there are high chances of errors, which further delay the bug resolution, affecting the entire

release cycle. This is an area wherein Machine Learning, and Deep Learning algorithms can be used to

classify the bugs reported and suggest a fix to the tester, thus removing the manual overhead. This paper

has used a system developed for bug classification with Atlassian JIRA [1] as the BTS and the bug data

generated from the DevOps tool named Chef [2]. This paper suggests a two-layered approach, wherein the

algorithms first detect the nature of the bug in the first layer and then, based on its nature, identify the

plausible cause in the second layer. Various supervised learning algorithms were experimented with for

classifying data, and their performance was observed and analyzed. It was observed that the Convolutional

Neural Networks (CNN) outperformed others. This paper is segmented into five parts. Introduction falls

under Section 1, followed by Related Work in Section 2. This section focuses on the study done by others

in this area. The working of the proposed system is elaborated in Section 3. Section 4 describes the results

obtained. The paper concludes with a possible future direction this research can take, as highlighted in

Section 5.

2 Related Work

Natural Language Processing, which encompasses text classification, finds extensive application in

domains like spam detection, sentiment analysis, etc. Textual data has an immense level of information

within it, but extracting relevant data from it is tedious and time-consuming owing to its unstructured nature.

CNN focuses on obtaining patterns from the input textual data, passing them through various filters, to

extract feature maps. These are then passed through multiple hidden layers for further feature extraction,

and the final output is obtained from the output layer of the neural network. Research has been done using

the reports generated from bug-tracking systems to classify the bugs into various categories. The research

undertaken by Diksha Behl, Sahil Handa, and Anuja Arora proposes using TF-IDF along with the Naïve

Bayes approach [3] to classify bugs into security and non-security categories. A vocabulary of bugs was

created from all the bug reports, and each report was converted into a vector, indicating the occurrence of

certain words in the report. Based on the weighted values of each complete word vector, the report was

classified as a security or non-security bug.

The researchers of [4] have worked on a bug reports classification system. This system uses N-gram

Inverse Document Frequency to derive phrases from the bug report to categorize the bug report as a valid

bug. These features were inputted into Logistic regression and Random Forest classification models. This

approach was compared with a topic modeling approach used for similar bug classification. The N-gram

IDF approach was found to be more accurate in both models. Tao Zhang and Byungjeong Lee, in their

paper [5], have described a method to detect identical bug reports based on bugs reported on Bugzilla. They

made use of bug rules and text-based similarities to identify duplicates. Taxonomy classification and

hierarchical clustering algorithms were used to classify the bug into the appropriate category. The paper by

Neelofar et al. [6] provides a method to classify bugs and compares feature extraction methods of TF-IDF

and Chi-Square algorithms. This research concluded that the Chi-square algorithm performed better than

TF-IDF in prediction accuracy. The idea behind the classification was that correct classification of bugs

can help the bug triage team to assign the reported bug to the right developer. The approach proposed by

Lin Tan and co-authors in their research paper [7] seeks to analyze the bug reported and create a patch

based on its root cause. R2Fix classifies the bug, obtains the parameters used in the source code based on

the report from the classifier, and uses these patterns to generate a patch. This paper seeks to improve the

bug classification aspect of the previous studies and aims to classify the bugs to arrive at the root cause of

the issue. This is achieved through two layers of classification. The subcategory thus arrived at makes it

easier for the developer to provide a solution.

JCSIT, 2021, vol.02, no.03

3 | P a g e

Figure 1: Architectural diagram of the proposed system

3 Proposed System

The pictorial representation of the model used in the paper is shown in Fig. 1. Data obtained from

Atlassian JIRA, a bug-tracking system, has to undergo pre-processing, after which it will be subjected to

various Machine Learning and Deep Learning Algorithms to learn from the existing bugs and classify the

new bugs based on its learning. A two-layered classification is done wherein the first layer classification

predicts the bug’s nature based on this class. A particular sub-class is predicted to give a plausible fix to the

tester. The errors collected during the operational time are stored and later used to re-learn the algorithm

after the storage reaches a certain threshold.

3.1 Dataset

A Bug tracking system called Atlassian JIRA was used to collect the bug list. The first error level was

essentially the output provided by the Chef Orchestration tool. The errors, in CSV format, were used as

input to the algorithms. The dataset consisted of 948 samples.

The dataset was categorized into 5 classes, namely:

1. Appserver Scripting Tool (270 samples)

This category deals with app server Scripting Tool related errors.

2. Middleware (70 samples)

This category deals with errors related to Middleware installation, patching, and upgrades.

3. Machine (315 samples)

This category deals with errors arising due to machine configurations, permissions, resource

limitation

4. The compilation (117 samples)

This category deals with issues in code quality, like variable declaration issues and syntactical

issues.

5. Application (176 samples)

 JCSIT, 2021, vol.02, no.03

4 | P a g e

This category deals with issues specific to the application deployment and upgrades.

The sub-classification for each of the categories mentioned above is as follows:

• AST

i) Startup/shutdown – Errors related to service reboot
ii) Domain – Errors related to the improper domain configuration

iii) Machine/Properties issues – Errors related to wrong attribute references in property files

passed to the AST scripts

iv) Connection/SSL issue – Errors caused by connection issues to application servers due to

improper server configurations

• Middleware

i) OPatch – Issues obtained during patching of Middleware

ii) RCU - Issues in creating DB schemas

iii) Machine - Issues specific to the virtual machine, its configurations, and permissions

iv) DB issues – Issues related to the database connection, like incorrect credentials, lack of

relevant schemas, etc.

• Machine

i) Missing file – Issues due to lack of required file

ii) Missing Parent Directories – Issues arising due to the lack of a parent directory to create

contents within it

iii) Rerun/System exit – Issues arising due to manual interrupts

iv) Permission issue – Issues related to incorrect permissions

v) Package issue – Issues arising due to unavailable packages in the yum repo

vi) Connection – Issues due to network and connection

vii) Timeout - Issues due to lack of resources or command timeout

• Compilation

i) Missing Declaration – Issues arising because of missing variable declaration

ii) Missing Attribute – Issues due to lack of variable assignment

iii) Syntax Errors – Chef-specific syntax errors

Note: Application errors are not sub-classified as they are specific to the applications and not the

orchestration process.

 Following are a few examples of commonly encountered errors [8] [9]:

1. Sample error 1:

Error Starting server AdminServer: nodemanager.NMException: Exception while starting

server ‘AdminServer’

2. Sample error 2:

Parent directory /user1/postgresql/9.x/bin does not exist.

Error executing action create on resource 'template[/user1/postgresql/9.x/bin/postgresql.conf]'

Chef::Exceptions::EnclosingDirectoryDoesNotExist

3.2 Pre-processing

Text data needs to be pre-processed as it helps in improving accuracy. The textual data was converted

to lowercase to ensure case insensitivity. The words in the NLTK stop words corpus (English) were

removed along with the other non-alphabetic characters, like numbers and punctuation marks, since they

do not contribute to the predictions. Stemming, a process of deriving the word’s root form, was also applied.

JCSIT, 2021, vol.02, no.03

5 | P a g e

3.3 Machine Learning Algorithms

3.3.1 Feature Engineering

Feature Engineering is the method of selecting suitable features for the algorithm. This paper has used

a method called “Term Frequency-Inverse Document Frequency,” known as TF-IDF.

TF-IDF is a numeric measure to judge the significance of a word in the collection. The significance of

the word jumps up when the occurrence of a word in the collection offsets the occurrence of the word in

the document increases.

 TF-IDF(x) = TF(x) * IDF(x) (1)

Where

TF(x) = (Count of term x present in document) / (Total count of terms in the document).

IDF(x) = loge (Total count of documents/Count of documents with term x:- ln(x)).

3.3.2 Classification

This paper compares the performance of a few classification algorithms such as Support Vector

Machine, Decision Tree, Naïve Bayes, Random Forest, and Convolutional Neural Networks (CNN). A tree-

based model for decision-making is employed in Decision Trees [10]. They yield resource costs, utility,

and chance event outcomes as results. The tree is split into edges based on condition/internal node attributes.

The last branch, thus obtained when the further split is not possible, is the decision/leaf. The categorized

class labels will be the child nodes.

 Entropy(M)= -∑p(M)*log p(M) (2)

 Gain(L,M)=Entropy(L)−Entropy(L,M) (3)

Random Forest [11] uses labeled training data, creates multiple decision trees, and merges them into

one, thereby improving prediction accuracy. It is similar to bagging classifiers and decision trees in terms

of the hyperparameters used. A subgroup of features determines the node splitting, contributing to the

classification. Using separate thresholds for each feature can modify the tree structure and contribute better

to the accuracy of the predictions than choosing a common threshold for all features.

Support Vector Machines (SVM)[12] are discriminative classifiers that categorize new samples based

on the hyperplane generated during the training phase. In two-dimensional space, the hyperplane is a line

dividing the 2D space into two parts corresponding to the classes in the data. A very different perspective

to the ensemble model is provided when bagged with other machine learning algorithms.

 Another algorithm used for text-based classification is the Naïve Bayes algorithm based on conditional

probability [13]. The core part of the algorithm comes from Bayes theorem, which states

 P(N|O) = (P(O|N)*P(N))/P(O) (4)

3.4 Deep Learning Algorithms

The algorithm used under Deep Learning methodology is Convolutional Neural Network, also known

as CNN[14]. It is a class of deep, feed-forward artificial neural networks (the connections between the

nodes in various layers do not form a cycle). For making minimal pre-processing, it makes use of a variety

of multi-layered perceptrons. The animal visual cortex was the source of inspiration for this algorithm. Two

important operations in CNN, which can be considered feature extractors, are convolution and pooling. Convolution

can be considered as applying a filter over a fixed-size window. Pooling merges the vectors resulting from various

convolution windows into a single-dimensional vector. After several max pooling layers and convolutional layers,

fully connected layers provide high-level reasoning in the network. Neurons in a fully connected layer are activated

via affine transformation, with matrix multiplication and a bias offset.

 JCSIT, 2021, vol.02, no.03

6 | P a g e

4 Experimental Results

The approach used in this paper successfully performed a two-stage classification of bugs reported from
the execution of Chef cookbooks. Comparing various machine learning techniques and deep learning
algorithms found that the deep learning CNN algorithm gives the highest accuracy score. Since the second
classification layer depends on the first layer, having a high-accuracy model in the first layer is the most
important aspect. Fig. 2 compares various classifiers in the first stage of classification. The graph in Fig. 2
shows that CNN achieves the highest accuracy score of 97.73 percent compared to the other algorithms,
whose accuracy score is less than 90 percent for the same data. The naïve Bayes algorithm yielded an
accuracy of 85 percent. The decision tree algorithm classified 76 percent accurately compared to the 86
percent of Random Forest. The performance of SVM surpassed that of the other machine learning
algorithms with an accuracy of 87 percent.

Figure 2: Accuracy, in percentage, for First Level Classification

Even though Naive Bayes is considered a standard approach for text data classification, but it is less

accurate when compared with deep learning algorithms. Although convolutional neural networks are

traditionally used for image data, it was also found to perform very well on text-based data. From the

comparison of accuracy on test data, it was observed that CNNs perform the best on both the first level

classification and each sub-classification in the second stage. The results for the same are shown in Tab 1.

0

20

40

60

80

100

120

CNN Naïve Bayes Decision tree SVM

Classification Accuarcy

AST Compilation Machine

JCSIT, 2021, vol.02, no.03

7 | P a g e

Table 1: Accuracy percentages from second level of classification

Algorithm AST Compilation Machine Middleware

CNN 99 98.67 95.57 98.83

Naïve Bayes 83 74 64 61

Decision tree 83 82 72 70

SVM 87 80 70 75

Random Forest 88 88 80 76

The tabular data given in Tab. 1 shows that CNN, a deep learning algorithm, has achieved high accuracy

rates, above 95 percent, for the second stage of classification. The other machine learning techniques have

lesser accuracy scores in comparison with CNN. The accuracy achieved by Naïve Bayes is in the range of

61 to 83 percent in the second stage of the classification; the Decision tree achieves in the range of 70 to 83

percent; the Support Vector Machine in the range of 70 to 87 percent, and Random Forest in the range of

76 to 88 percent.

5 Conclusion and Future Scope

This paper evaluates the performance of various machine learning and deep learning approaches for Bug

Classification of DevOps bugs using JIRA data. As opposed to the traditional method, in which a developer

has to triage the bugs manually, this approach enables them to invest lesser time in debugging the issue and

arriving at the root cause. Based on the experimental results, it can be observed that Convolutional Neural

Networks, a deep learning technique, outperformed all the other approaches used. Furthermore, it was

observed that Naïve Bayes, a probabilistic classifier generally preferred for text classification, performed

poorly with the bug dataset used in this paper. Ensemble methods like a Decision tree and Random Forest

performed better on this dataset. This model can be extended to suggest plausible solutions for the bugs,

which can significantly reduce the maintenance windows. This approach can also be extended to support

and resolve customer issues. Since the approach accepts inputs in textual format, this can also be extended

for any text classification problem.

Acknowledgments: The authors thank their families and colleagues for their continued support.

Funding Statement: The author(s) received no specific funding for this study.

Availability of Data and Materials: The data used to support the findings of this study can be obtained

from the corresponding author upon request.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the

present study.

References

[1] Atlassian JIRA Software, “Bug tracking done right with Jira Software,” 2020. [Online]. Available:
https://www.atlassian.com/software/jira/bug-tracking

[2] Progress Chef, “Progress Chef is the Only DevOps Provider Recognized as a Policy as Code Leader,” 2020.
[Online]. Available: https://chef.io/

[3] D. Behl, S. Handa and A. Arora, “A Bug Mining Tool to Identify and Analyze Security Bugs using Naive

Bayes and TF-IDF,” In. Proceedings of International Conference on Reliability Optimization and Information

Technology, Faridabad, India, pp. 294 – 299, 2014. https://doi.org/10.1109/ICROIT.2014.6798341

https://www.atlassian.com/software/jira/bug-tracking
https://chef.io/
https://doi.org/10.1109/ICROIT.2014.6798341

 JCSIT, 2021, vol.02, no.03

8 | P a g e

[4] P. Terdchanakul, H. Hata, P. Phannachitta and K. Matsumoto, “Bug or Not? Bug Report Classification using

N-Gram IDF,” In. Proceedings of IEEE International Conference on Software Maintenance and Evolution

(ICSME), Shanghai, China, pp. 534 - 538, 2017. https://doi.org/10.1109/ICSME.2017.14

[5] T. Zhang and B. Lee, “A Bug Rule based Technique with Feedback for Classifying Bug Reports,” In.

Proceedings of IEEE 11th International Conference on Computer and Information Technology, Pafos, Cyprus,

pp. 336 - 343, 2011. https://doi.org/10.1109/CIT.2011.90

[6] Neelofar, M. Y. Javed and H. Mohsin, “An Automated Approach for Software Bug Classification,” In.

Proceedings of Sixth International Conference on Complex, Intelligent, and Software Intensive Systems,

Palermo, Italy, pp. 414 - 419, 2012. https://doi.org/10.1109/CISIS.2012.132

[7] C. Liu, J. Yang, L. Tan and M. Hafiz, “R2Fix: Automatically Generating Bug Fixes from Bug Reports,” In.

Proceedings of IEEE Sixth International Conference on Software Testing, Verification and Validation,

Luxembourg, pp. 282 - 291, 2013. https://doi.org/10.1109/ICST.2013.24

[8] Linux Academy, “Learn by doing with A Cloud Guru,” 2020. [Online]. Available: https://

https://acloudguru.com/

[9] Sous Chefs, “Sous Chefs are a community of Chef cookbook maintainers,” 2020. [Online]. Available:

https://github.com/sous-chefs

[10] J. R. Quinlan, “Induction of decision trees,” Machine Learning, Vol. 1, no. 1, pp. 81–106, 1986.

https://doi.org/10.1007/BF00116251

[11] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1 pp. 5–32, 2001.

https://doi.org/10.1023/A:1010933404324

[12] M. A. Hearst, S.T. Dumais, E. Osuna, J. Platt and B. Scholkopf “Support Vector Machines,” IEEE Intelligent

Systems and their Applications, vol. 13, no. 1, pp. 18–28, 1998. https://doi.org/10.1109/5254.708428

[13] S. Xu, “Bayesian Naïve Bayes classifiers to text classification,” Journal of Information Science, vol. 44, no. 1,

pp. 48–59, 2018. https://doi.org/10.1177/0165551516677946

[14] Y. Luan and S. Lin, “Research on Text Classification Based on CNN and LSTM,” 2019 IEEE International

Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, pp. 352-355, 2019.

https://doi.org/10.1109/ICAICA.2019.8873454

This work is licensed under a Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium provided the original work

is properly cited.

https://doi.org/10.1109/ICSME.2017.14
https://doi.org/10.1109/CIT.2011.90
https://doi.org/10.1109/CISIS.2012.132
https://doi.org/10.1109/ICST.2013.24
https://acloudguru.com/
https://github.com/sous-chefs
https://doi.org/10.1007/BF00116251
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/5254.708428
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1109/ICAICA.2019.8873454

