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Abstract: DevOps is a method used to automate the process between the 

development team and the IT team through which they can develop, test, 

and release their software. Bugs during this stage slow the entire release 

cycle. To overcome this, Machine Learning and Deep Learning Algorithms 

are used to analyze and arrive at the possible cause of the bug. This reduces 

the dependency on the developers and, in turn, speeds up the release cycle. 

The bug dataset is fed to various classification algorithms like CNN, 

Random Forest, Decision Tree, SVM, and Naïve Bayes for bug 

classification. Based on the experimental results, it can be observed that 

Convolutional Neural Networks, a deep learning technique, outperformed 

all the other approaches used. Furthermore, it was observed that Naïve 

Bayes, a probabilistic classifier generally preferred for text classification, 

performed poorly with the bug dataset used in this paper. Ensemble 

methods like a Decision tree and Random Forest performed better on this 

dataset. 
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1 Introduction 

The DevOps paradigm has gained much popularity in the Information Technology world today since it 

enables teams to quickly deliver stable, reliable products. It ensures swift release cycles, thereby improving 

the maintenance and upgrade timelines. DevOps combines agile with automation and continuous delivery, 

promoting efficiency between development and operations teams and providing faster innovations and 

superior deliverables to customers and businesses. Bug Tracking Systems (BTS) play an important role 

here as it emphasizes better quality faster, thus rendering better service and customer satisfaction. The BTS 

systems allow for efficient communication and collaboration between the reporters of the bugs and the 

respective feature developers by posting comments and attachments, giving more information on the errors, 

and promoting speedy resolution. In addition, these systems have features that provide detailed information 

about team members’ efforts to analyze and solve a bug reported, statistics on the number of bugs reported, 

and many more items to debug. 

However, even with the combination of the above two aspects, that of DevOps and BTS, there are still 

gaps in smooth product delivery. The main cause is that the bug counts for large enterprise projects are 

generally high, and sorting and contacting the respective developers for a fix is still manual. This increases 

the resolution time for each bug raised. Since there is human intervention in the bug assignment and bug 
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fixes process, there are high chances of errors, which further delay the bug resolution, affecting the entire 

release cycle. This is an area wherein Machine Learning, and Deep Learning algorithms can be used to 

classify the bugs reported and suggest a fix to the tester, thus removing the manual overhead. This paper 

has used a system developed for bug classification with Atlassian JIRA [1] as the BTS and the bug data 

generated from the DevOps tool named Chef [2]. This paper suggests a two-layered approach, wherein the 

algorithms first detect the nature of the bug in the first layer and then, based on its nature, identify the 

plausible cause in the second layer. Various supervised learning algorithms were experimented with for 

classifying data, and their performance was observed and analyzed. It was observed that the Convolutional 

Neural Networks (CNN) outperformed others. This paper is segmented into five parts. Introduction falls 

under Section 1, followed by Related Work in Section 2. This section focuses on the study done by others 

in this area. The working of the proposed system is elaborated in Section 3. Section 4 describes the results 

obtained. The paper concludes with a possible future direction this research can take, as highlighted in 

Section 5. 

2 Related Work 

Natural Language Processing, which encompasses text classification, finds extensive application in 

domains like spam detection, sentiment analysis, etc. Textual data has an immense level of information 

within it, but extracting relevant data from it is tedious and time-consuming owing to its unstructured nature. 

CNN focuses on obtaining patterns from the input textual data, passing them through various filters, to 

extract feature maps. These are then passed through multiple hidden layers for further feature extraction, 

and the final output is obtained from the output layer of the neural network. Research has been done using 

the reports generated from bug-tracking systems to classify the bugs into various categories. The research 

undertaken by Diksha Behl, Sahil Handa, and Anuja Arora proposes using TF-IDF along with the Naïve 

Bayes approach [3] to classify bugs into security and non-security categories. A vocabulary of bugs was 

created from all the bug reports, and each report was converted into a vector, indicating the occurrence of 

certain words in the report. Based on the weighted values of each complete word vector, the report was 

classified as a security or non-security bug. 

The researchers of [4] have worked on a bug reports classification system. This system uses N-gram 

Inverse Document Frequency to derive phrases from the bug report to categorize the bug report as a valid 

bug. These features were inputted into Logistic regression and Random Forest classification models.  This 

approach was compared with a topic modeling approach used for similar bug classification. The N-gram 

IDF approach was found to be more accurate in both models. Tao Zhang and Byungjeong Lee, in their 

paper [5], have described a method to detect identical bug reports based on bugs reported on Bugzilla. They 

made use of bug rules and text-based similarities to identify duplicates. Taxonomy classification and 

hierarchical clustering algorithms were used to classify the bug into the appropriate category. The paper by 

Neelofar et al. [6] provides a method to classify bugs and compares feature extraction methods of TF-IDF 

and Chi-Square algorithms. This research concluded that the Chi-square algorithm performed better than 

TF-IDF in prediction accuracy. The idea behind the classification was that correct classification of bugs 

can help the bug triage team to assign the reported bug to the right developer. The approach proposed by 

Lin Tan and co-authors in their research paper [7] seeks to analyze the bug reported and create a patch 

based on its root cause. R2Fix classifies the bug, obtains the parameters used in the source code based on 

the report from the classifier, and uses these patterns to generate a patch. This paper seeks to improve the 

bug classification aspect of the previous studies and aims to classify the bugs to arrive at the root cause of 

the issue. This is achieved through two layers of classification. The subcategory thus arrived at makes it 

easier for the developer to provide a solution. 
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Figure 1: Architectural diagram of the proposed system 

3 Proposed System 

The pictorial representation of the model used in the paper is shown in Fig. 1. Data obtained from 

Atlassian JIRA, a bug-tracking system, has to undergo pre-processing, after which it will be subjected to 

various Machine Learning and Deep Learning Algorithms to learn from the existing bugs and classify the 

new bugs based on its learning. A two-layered classification is done wherein the first layer classification 

predicts the bug’s nature based on this class. A particular sub-class is predicted to give a plausible fix to the 

tester. The errors collected during the operational time are stored and later used to re-learn the algorithm 

after the storage reaches a certain threshold. 

3.1 Dataset 

A Bug tracking system called Atlassian JIRA was used to collect the bug list. The first error level was 

essentially the output provided by the Chef Orchestration tool. The errors, in CSV format, were used as 

input to the algorithms. The dataset consisted of 948 samples. 

The dataset was categorized into 5 classes, namely: 

1. Appserver Scripting Tool  (270 samples) 

This category deals with app server Scripting Tool related errors.  

2. Middleware  (70 samples) 

This category deals with errors related to Middleware installation, patching, and upgrades. 

3. Machine  (315 samples) 

This category deals with errors arising due to machine configurations, permissions, resource 

limitation 

4. The compilation (117 samples) 

This category deals with issues in code quality, like variable declaration issues and syntactical 

issues. 

5. Application   (176 samples) 
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This category deals with issues specific to the application deployment and upgrades. 

The sub-classification for each of the categories mentioned above is as follows: 

• AST  

i) Startup/shutdown – Errors related to service reboot 
ii) Domain – Errors related to the improper domain configuration 

iii) Machine/Properties issues – Errors related to wrong attribute references in property files 

passed to the AST scripts 

iv) Connection/SSL issue – Errors caused by connection issues to application servers due to 

improper server configurations 

• Middleware  

i)  OPatch – Issues obtained during patching of Middleware 

ii)  RCU  - Issues in creating DB schemas 

iii) Machine - Issues specific to the virtual machine, its configurations, and permissions 

iv) DB issues – Issues related to the database connection, like incorrect credentials, lack of 

relevant schemas, etc. 

• Machine    

i)  Missing file – Issues due to lack of required file   

ii) Missing Parent Directories – Issues arising due to the lack of a parent directory to create 

contents within it  

iii)  Rerun/System exit – Issues arising due to manual interrupts  

iv) Permission issue – Issues related to incorrect permissions   

v) Package issue – Issues arising due to unavailable packages in the yum repo 

vi) Connection – Issues due to network and connection 

vii) Timeout  - Issues due to lack of resources or command timeout 

• Compilation   

i)  Missing Declaration – Issues arising because of missing variable declaration   

ii)  Missing Attribute – Issues due to lack of variable assignment 

iii)  Syntax Errors – Chef-specific syntax errors 

 

Note: Application errors are not sub-classified as they are specific to the applications and not the 

orchestration process. 

 

    Following are a few examples of commonly encountered errors [8] [9]: 

1. Sample error 1: 

Error Starting server AdminServer: nodemanager.NMException: Exception while starting 

server ‘AdminServer’ 

 

2. Sample error 2:  

Parent directory /user1/postgresql/9.x/bin does not exist. 

Error executing action create on resource 'template[/user1/postgresql/9.x/bin/postgresql.conf]' 

Chef::Exceptions::EnclosingDirectoryDoesNotExist  

3.2 Pre-processing 

Text data needs to be pre-processed as it helps in improving accuracy. The textual data was converted 

to lowercase to ensure case insensitivity. The words in the NLTK stop words corpus (English) were 

removed along with the other non-alphabetic characters, like numbers and punctuation marks, since they 

do not contribute to the predictions. Stemming, a process of deriving the word’s root form, was also applied. 



            

JCSIT, 2021, vol.02, no.03                                                                                                                                        

5 | P a g e  

 

3.3 Machine Learning Algorithms 

3.3.1 Feature Engineering 

Feature Engineering is the method of selecting suitable features for the algorithm. This paper has used 

a method called “Term Frequency-Inverse Document Frequency,” known as TF-IDF. 

TF-IDF is a numeric measure to judge the significance of a word in the collection. The significance of 

the word jumps up when the occurrence of a word in the collection offsets the occurrence of the word in 

the document increases.  

 TF-IDF(x) = TF(x) * IDF(x)                                               (1) 

Where  

TF(x) = (Count of term x present in document) / (Total count of terms in the document). 

IDF(x) = loge (Total count of documents/Count of documents with term x:- ln(x)). 

3.3.2 Classification 

This paper compares the performance of a few classification algorithms such as Support Vector 

Machine, Decision Tree, Naïve Bayes, Random Forest, and Convolutional Neural Networks (CNN). A tree-

based model for decision-making is employed in Decision Trees [10]. They yield resource costs, utility, 

and chance event outcomes as results. The tree is split into edges based on condition/internal node attributes. 

The last branch, thus obtained when the further split is not possible, is the decision/leaf. The categorized 

class labels will be the child nodes. 

     Entropy(M)= -∑p(M)*log p(M)                                                                                                             (2) 

     Gain(L,M)=Entropy(L)−Entropy(L,M)                                                                                                  (3) 

Random Forest [11] uses labeled training data, creates multiple decision trees, and merges them into 

one, thereby improving prediction accuracy. It is similar to bagging classifiers and decision trees in terms 

of the hyperparameters used. A subgroup of features determines the node splitting, contributing to the 

classification. Using separate thresholds for each feature can modify the tree structure and contribute better 

to the accuracy of the predictions than choosing a common threshold for all features.  

Support Vector Machines (SVM)[12] are discriminative classifiers that categorize new samples based 

on the hyperplane generated during the training phase. In two-dimensional space, the hyperplane is a line 

dividing the 2D space into two parts corresponding to the classes in the data. A very different perspective 

to the ensemble model is provided when bagged with other machine learning algorithms. 

 Another algorithm used for text-based classification is the Naïve Bayes algorithm based on conditional 

probability [13]. The core part of the algorithm comes from Bayes theorem, which states 

      P(N|O) =  ( P(O|N)*P(N))/P(O)                                                                                                                        (4) 

3.4 Deep Learning Algorithms 

The algorithm used under Deep Learning methodology is Convolutional Neural Network, also known 

as CNN[14]. It is a class of deep, feed-forward artificial neural networks (the connections between the 

nodes in various layers do not form a cycle). For making minimal pre-processing, it makes use of a variety 

of multi-layered perceptrons. The animal visual cortex was the source of inspiration for this algorithm. Two 

important operations in CNN, which can be considered feature extractors, are convolution and pooling. Convolution 

can be considered as applying a filter over a fixed-size window. Pooling merges the vectors resulting from various 

convolution windows into a single-dimensional vector. After several max pooling layers and convolutional layers, 

fully connected layers provide high-level reasoning in the network. Neurons in a fully connected layer are activated 

via affine transformation, with matrix multiplication and a bias offset.  
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4 Experimental Results 

The approach used in this paper successfully performed a two-stage classification of bugs reported from 
the execution of Chef cookbooks. Comparing various machine learning techniques and deep learning 
algorithms found that the deep learning CNN algorithm gives the highest accuracy score. Since the second 
classification layer depends on the first layer, having a high-accuracy model in the first layer is the most 
important aspect. Fig. 2 compares various classifiers in the first stage of classification. The graph in Fig. 2 
shows that CNN achieves the highest accuracy score of 97.73 percent compared to the other algorithms, 
whose accuracy score is less than 90 percent for the same data. The naïve Bayes algorithm yielded an 
accuracy of 85 percent. The decision tree algorithm classified 76 percent accurately compared to the 86 
percent of Random Forest. The performance of SVM surpassed that of the other machine learning 
algorithms with an accuracy of 87 percent. 

 

 

Figure 2: Accuracy, in percentage, for First Level Classification 

 

Even though Naive Bayes is considered a standard approach for text data classification, but it is less 

accurate when compared with deep learning algorithms. Although convolutional neural networks are 

traditionally used for image data, it was also found to perform very well on text-based data. From the 

comparison of accuracy on test data, it was observed that CNNs perform the best on both the first level 

classification and each sub-classification in the second stage. The results for the same are shown in Tab 1. 
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Table 1: Accuracy percentages from second level of classification 

Algorithm AST Compilation Machine Middleware 

CNN 99 98.67 95.57 98.83 

Naïve Bayes 83 74 64 61 

Decision tree 83 82 72 70 

SVM 87 80 70 75 

Random Forest 88 88 80 76 

 

The tabular data given in Tab. 1 shows that CNN, a deep learning algorithm, has achieved high accuracy 

rates, above 95 percent, for the second stage of classification. The other machine learning techniques have 

lesser accuracy scores in comparison with CNN. The accuracy achieved by Naïve Bayes is in the range of 

61 to 83 percent in the second stage of the classification; the Decision tree achieves in the range of 70 to 83 

percent; the Support Vector Machine in the range of 70 to 87 percent, and Random Forest in the range of 

76 to 88 percent. 

5 Conclusion and Future Scope 

This paper evaluates the performance of various machine learning and deep learning approaches for Bug 

Classification of DevOps bugs using JIRA data. As opposed to the traditional method, in which a developer 

has to triage the bugs manually, this approach enables them to invest lesser time in debugging the issue and 

arriving at the root cause. Based on the experimental results, it can be observed that Convolutional Neural 

Networks, a deep learning technique, outperformed all the other approaches used. Furthermore, it was 

observed that Naïve Bayes, a probabilistic classifier generally preferred for text classification, performed 

poorly with the bug dataset used in this paper. Ensemble methods like a Decision tree and Random Forest 

performed better on this dataset. This model can be extended to suggest plausible solutions for the bugs, 

which can significantly reduce the maintenance windows. This approach can also be extended to support 

and resolve customer issues. Since the approach accepts inputs in textual format, this can also be extended 

for any text classification problem. 
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