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Abstract: Hypothetically, the stability study of throughflow influence on 

Bénard-Marangoni ferroconvection is examined. The top of the fluid layer 

is assumed to be free. The surface tension effect that depends on 

temperature is supposed to be non-deformable and subject to general 

thermal boundary conditions. The bottom of the fluid layer is assumed to 

be rigid with a fixed temperature. An analytical solution to the issue is 

achieved by using the Regular perturbation approach. The findings show 

that the stability characteristics are independent of the throughflow 

direction. The ferroconvection is further delayed by Peclet number Q. 

Convection is accelerated by raising the magnetic number Rm and the 

Prandtl number Pr. It is observed that the Bénard-Marangoni 

ferroconvection is unaffected by M3, which represents the non-linearity of 

fluid magnetization. 

Keywords: Bénard-Marangoni Ferroconvection; Throughflow; Regular 

Perturbation Method. 

1 Introduction 

Synthetic magnetic fluids or ferrofluids are the colloidal suspensions of single domain nanoparticles 

(diameter is 3-10nm) of magnetite in non-conductive liquids such as water, heptane, kerosene etc. Because 

of their magnetic and liquid properties, these fluids came out as dependable materials for solving complex 

engineering problems. The authors [1], [2], [3] and many others provided an overview of this interesting 

topic with applications authoritatively. The study of convective instability in the ferrofluid layer was 

initiated by [4], and it was widely continued over the years (see references [5] to [11]). 

Suppose the upper layer of the ferrofluid is open to the atmosphere. In that case, the instability is due to 

the combined effect of surface tension and buoyancy forces, known as Bénard-Marangoni ferroconvection. 

The convective instability due to these effects attracted the researchers. To begin with, the nonlinear and 

linear stability of buoyancy and surface tension effects in the ferrofluid layer is studied by [12]. The 

combination of Rosensweig and Marangoni instabilities by taking two semi-infinite immiscible and 

incompressible viscous fluids of infinite lateral level is studied by Weiplepp and Brand [13]. The authors 

[14] have explained the cause of initial temperature gradients on Marangoni ferroconvection to understand 

the control of ferroconvection. The instability of Bénard-Marangoni ferroconvection in the presence of an 

applied magnetic field due to various effects like MFD viscosity, internal heat generation and temperature-
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dependent viscosity was demonstrated by the authors [15], [16] and [17]. The Benard-Marangoni 

ferroconvection in a rotating ferrofluid layer with MFD viscosity was theoretically explained by [18]. 

The effect of throughflow on convection also draws considerable attention in the literature. The author 

was the first person who studies the instability in a porous intermediate by considering the case in which 

the convective effects rule the basic state temperature field on the throughflow. Later studied linear stability 

for small throughflow with both conducting boundaries, which are rigid and insulating. These authors 

showed that the convection is stabilized in the presence of throughflow. Authors [19] investigated the power 

of throughflow on convective instability in a porous medium by assuming that the boundaries are 

conducting and either permeable or impermeable. These works offered a physical explanation for the above 

situation and showed that destabilization occurs. The exact analysis of the throughflow effect on Marangoni 

convection was demonstrated. Authors [19] have theoretically explained the effect of throughflow on 

ferroconvection in a porous medium and explained double diffusive oscillatory convection with non-

uniform heating effects in the porous medium. A similar study with variable viscosity and throughflow for 

ferromagnetic fluids was studied.  

All the investigations above are limited, and no attempts have been made to understand the throughflow 

effect on control of Benard-Marangoni ferroconvection despite its significance in ferrofluid technology. 

Hence the present study examines the throughflow effect on Benard-Marangoni ferroconvection in the 

presence vertically applied magnetic field, and its nomenclatures are shown in Table 1. 

Table 1: Nomenclature 

�⃗� Velocity vector 𝜌0 Reference density at 𝑇0 

𝑝 Pressure 𝑘𝑡 Thermal conductivity 

�⃗⃗⃗� Magnetic field intensity 𝜒 Magnetic susceptibility 

�⃗⃗⃗� Magnetization K Pyromagnetic co-efficient 

�⃗⃗� Magnetic induction 𝜙 Magnetic potential 

𝜇 Dynamic viscosity 𝛻2 Laplacian 

𝛼𝑡 Co-efficient of thermal 

expansion 
𝑊 The amplitude of the vertical 

component of velocity 

𝛼 wave number 𝛩 Amplitude of temperature 

𝑀𝑎 Marangoni number 𝛷 The amplitude of the magnetic 

potential 

𝑇𝑏 Basic temperature 𝑀3 Non-linearity of magnetization 

parameter 

𝑇 Temperature �̄� Average temperature 

𝛻1
2 Horizontal Laplacian operator 𝑄 throughflow 

𝑀1 Magnetic number 𝑃𝑟 Prandtl number 

𝑅𝑡 Thermal Rayleigh number 𝑅𝑚 Magnetic Rayleigh number 

 

2 Formulation 

We consider an inactive ferrofluid layer initially with an invariable throughflow of magnitude 𝑤0  and 

gravity (�⃗� = −𝑔�̂�) associated in the direction with a vertically applied magnetic field 𝐻0 as presented in 

the physical configuration. The bottom layer of fluid is taken as rigid, whereas the free upper surface is flat 

and non-deformable, where the surface tension effect is considered as 𝜎 = 𝜎0 − 𝜎𝑇(𝑇 − 𝑇0) where𝜎0 is 

unperturbed value and −𝜎𝑇  rate of change of surface tension with temperature. The coordinates (𝑥, 𝑦, 𝑧) 

are placed at the bottom layer with z–axis vertical as shown in figure 1. 
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Figure 1: Physical Configuration 

The principal equations of the Boussinesq approximation are 

𝛻 ⋅ �⃗� = 0            (1) 

𝜌0 [
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗� ⋅ 𝛻)�⃗�] = −𝛻𝑝 + 𝜇𝛻2�⃗� + 𝜌0[1 − 𝛼𝑡(𝑇 − 𝑇0)]�⃗� + 𝛻 ⋅ (�⃗⃗��⃗⃗⃗�)    (2)

 
𝐴

𝜕𝑇

𝜕𝑡
+ (�⃗� ⋅ 𝛻)𝑇 = 𝑘𝑡𝛻2𝑇          (3) 

𝛻 ⋅ �⃗⃗� = 0, 𝛻 × �⃗⃗⃗� = 0𝑜𝑟�⃗⃗⃗� = 𝛻𝜙         (4a, b) 

�⃗⃗� = 𝜇0(�⃗⃗⃗� + �⃗⃗⃗�)           (5) 

�⃗⃗⃗� = [𝑀0 + 𝜒(𝐻 − 𝐻0) − 𝐾(𝑇 − �̄�)] (
�⃗⃗⃗�

𝐻
)        (6) 

We assume that the fundamental state is inactive, and its solution is: 

 𝑞𝑏⃗⃗⃗⃗⃗(𝑧) = 𝑤0�̂� 

 𝑝𝑏(𝑧) = 𝑝0 − 𝜌0𝑔𝑧 −
𝜌0𝛼𝑡𝑔𝛥𝑇(𝑤0𝑧−𝜅𝑒𝑤0𝑧/𝜅)

𝑤0(1−𝑒𝑤0𝑑/𝜅)
−

𝜇0𝐾𝛥𝑇𝑒𝑤0𝑧/𝜅(2−𝑒𝑤0𝑧/𝜅)

2(1+𝜒)(1−𝑒𝑤0𝑑/𝜅)2 [𝑀0 +
𝐾𝛥𝑇

(1+𝜒)
] 

 𝑇𝑏(𝑧) = 𝑇0 − ∆𝑇 [
1−𝑒𝑤0𝑧/𝑘

1−𝑒𝑤0𝑑/𝑘] 

 𝐻𝑏
⃗⃗⃗⃗⃗⃗ (𝑧) = [𝐻0 −

𝐾∆𝑇

1+𝜒
(

1−𝑒
𝑤0𝑧

𝑘

1−𝑒
𝑤0𝑑

𝑘

)] �̂� 

𝑀𝑏
⃗⃗ ⃗⃗ ⃗⃗ (𝑧) = [𝑀0 −

𝐾∆𝑇

1+𝜒
(

1−𝑒
𝑤0𝑧

𝑘

1−𝑒
𝑤0𝑑

𝑘

)] �̂�         (7) 

Where, �̂� is a unit vector along z - axis, and b denotes the fundamental state. Due to throughflow, 

temperature distribution at the fundamental state is nonlinear and has an intense effect on stability. But in 

the absence, the distribution at the basic state is linear and expressed as 

 𝑇𝑏(𝑧) = 𝑇0 −
∆𝑇

𝑑
𝑧 

To examine the stability, we give small perturbations, as shown, 

[�⃗�, 𝑝, 𝑇, �⃗⃗⃗�, �⃗⃗⃗�] = [𝜔0�̂� + �⃗�′, 𝑝𝑏(𝑧) + 𝑝′, 𝑇𝑏(𝑧) + 𝑇 ′, �⃗⃗⃗�𝑏(𝑧) + �⃗⃗⃗�′, �⃗⃗⃗�𝑏(𝑧) + �⃗⃗⃗�′]
    

(8) 

where, �⃗�′, 𝑝′, 𝑇 ′, �⃗⃗⃗�, �⃗⃗⃗�′ are small perturbation quantities. 

Substituting (8) into (2), linearizing and operating curl twice to eliminate pressure term, a component of 

z in the subsequent equation is 

[𝜌0
𝜕

𝜕𝑡
− 𝜇𝛻2] 𝛻2𝑤 = 𝜌0𝛼𝑡𝑔𝛻1

2𝑇 +
𝐾𝛥𝑇𝑤0𝑒𝑤0𝑧/𝜅

𝜅(1+𝜒)(1−𝑒𝑤0𝑑/𝜅)
[𝜇0(1 + 𝜒)

𝜕

𝜕𝑧
𝛻1

2𝜙 − 𝜇0𝐾𝛻1
2𝑇]   (9) 
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Substituting equation (8) in equation (3) and linearizing, we get 

𝐴 (
𝜕𝑇

𝜕𝑡
+ 𝑤0

𝜕𝑇

𝜕𝑧
) = 𝑘𝑡𝛻2𝑇 −

𝑤0
2𝛥𝑇

𝜅(1−𝑒𝑤0𝑑/𝜅)
𝑒𝑤0𝑧/𝜅       (10) 

Equation (6), after substituting (8), may be written as 

(1 +
𝑀0

𝐻0
) 𝛻1

2𝜙 + (1 + 𝜒)
𝜕2𝜙

𝜕𝑧2 − 𝐾
𝜕𝑇

𝜕𝑧
= 0        (11)        

We assume that the stability exchange principle holds good, and hence we considered normal mode 

expansion as 

{𝑤, 𝑇, 𝜙} = {𝑊(𝑧), 𝛩(𝑧), 𝛷(𝑧)}𝑒𝑖(𝑙𝑥+𝑚𝑦)         (12) 

Where, 𝑙, 𝑚 represents wave numbers in 𝑥 and 𝑦 direction.
 

We substitute equation (12) into equations (9) to (11), non-dimensionalizing by choosing 

(𝑥 ∗, 𝑦 ∗, 𝑧 ∗) = (
𝑥

𝑑
,

𝑦

𝑑
,

𝑧

𝑑
) , 𝑊 ∗=

𝑑

𝜈
𝑊, 𝛩 ∗=

𝜅

𝛽𝜈𝑑
𝛩, 𝛷 ∗=

(1+𝜒) 𝜅

𝛫𝛽𝜈𝑑2 𝛷     (13)

 
we obtain 

(𝐷2 − 𝑎2)2𝑊 − 𝑀𝐷(𝐷2 − 𝑎2)𝑊 = −𝑅𝑚𝑎2𝑓(𝑧)(𝐷𝛷 − 𝛩) + 𝑅𝑡𝑎2𝛩     (14) 

(𝐷2 − 𝑎2)𝛩 − 𝑄𝐷𝛩 = 𝑓(𝑧)𝑊         (15) 

(𝐷2 − 𝑎2𝑀3)𝛷 − 𝐷𝛩 = 0          (16) 

where, 𝑀 = 𝑄/𝑃𝑟  and 𝑓(𝑧) is given by,

 𝑓(𝑧) = −
𝑄𝑒𝑄𝑧

𝑒𝑄−1
           (17)           

The following are the boundary conditions chosen to analyze the stability: 

𝑊 = 𝐷𝑊 = 𝛷 = 𝐷𝛩 = 0
 
                                           𝑧 = 0  

𝑊 = 𝐷2𝑊 + 𝑀𝑎𝑎2𝛩 = 𝐷𝛷 = 𝐷𝛩 = 0
                      

𝑧 = 1      (18a,b) 

3 Solution to the Problem 

The Regular perturbation technique is applied to extract the decisive eigenvalues with perturbation 

parameter 𝑎 (wave number). As a result, we expand 𝑊, 𝛩
 
 and 𝛷 in powers of 𝑎2 as  

{𝑊(𝑧), 𝛩(𝑧), 𝛷(𝑧)} = {𝑊0, 𝛩0, 𝛷0} + 𝑎2{𝑊1, 𝛩1, 𝛷1} + − − − − − − −    (19) 

Substituting (19) into (14) to (16) and using the conditions (18a, b), gathering the coefficients of terms 

of order zero, we get 

𝐷4𝑊0 − 𝑀𝐷3𝑊0 = 0          (20a) 

𝐷2𝛩0 − 𝑄𝐷𝛩0 − 𝑓(𝑧)𝑊0 = 0         (20b) 

𝐷2𝛷0 − 𝐷𝛩0 = 0           (20c) 

Solving the above equations, we obtain the solution to equations of order zero as 

𝑊0 = 0, 𝛩0 = 1𝑎𝑛𝑑𝛷0 = 0          (21) 

Similarly, equations of order one are, 

𝐷4𝑊1 − 𝑀𝐷3𝑊1 = 𝑅𝑡[1 + 𝑀1𝑓(𝑧)]        (22a)  

𝐷2𝛩1 − 𝑄𝐷𝛩1 = 1 + 𝑓(𝑧)𝑊1         (22b) 

𝐷2𝛷1 − 𝐷𝛩1 = 0           (22c) 

Solving equation (22a), we get 

𝑊1 = 𝑐1 + 𝑐2𝑧 + 𝑐3𝑧2 + 𝑐4𝑒𝑀𝑧 −
𝑧3𝑅𝑡

6𝑀
+

𝑅𝑀1𝑒𝑄𝑧

(1−𝑒𝑄)(𝑄3−𝑀𝑄)
      (23) 

where, 𝑀 = 𝑄/𝑃𝑟  and 𝑐𝑖
′𝑠 are constants of integration and are given by 
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𝑐1 =
1

𝛾2
[−

𝑅𝑡

3𝑀
+

𝑀𝑎

2
] − 𝛾3 − 𝛾1,  

𝑐2 =
−𝑀

𝛾2
[−

𝑅𝑡

3𝑀
+

𝑀𝑎

2
] − 𝑀𝛾3 − 𝑄𝛾1,  

𝑐3 =
𝑅𝑡

2𝑀
[1 +

𝑀2𝑒𝑀

3𝛾2
] −

𝑀𝑎

2
[1 +

𝑀2𝑒𝑀

2𝛾2
] −

1

2
[𝑄2𝑒𝑄𝛾1 + 𝑀2𝑒𝑀𝛾3] and 

𝑐4 =
1

𝛾2
[−

𝑅𝑡

3𝑀
+

𝑀𝑎

2
] + 𝛾3  

where, 𝛾1 =
𝑅𝑀1

(1−𝑒𝑄)(𝑄3−𝑀𝑄2)
  

𝛾2 = 1 − 𝑀 −
𝑀2𝑒𝑀

2
+ 𝑒𝑀     and 

𝛾3 =
𝛾1

𝛾2
[1 + 𝑄 +

𝑄2𝑒𝑄

2
− 𝑒𝑄]  

Integrating (22b) with respect to z, taking limits from 0 to 1, and using fundamental temperature 

conditions, we get 

∫ 𝑓(𝑧)𝑊1𝑑𝑧 = −1
1

0
          (24) 

Substituting for 𝑊1  from (23) and 𝑓(𝑧) from (17) into (24), carrying out the integration under the 

limiting conditions as → 0, leads to the expression. 

𝑅𝑡𝑐 =
20(48−𝑀𝑎𝑐)

3(1+𝑀1)
            (25) 

Further, as 𝑀𝑎𝑐 = 0 Eq. (25) reduces to the form 

𝑅𝑡𝑐 =
320

1+𝑀1
            (26) 

This coincides with the expression of 𝑅𝑡𝑐 by [28]. For 𝑀1 = 0 equation (26) gives 𝑅𝑡𝑐 = 320,
 
which is 

the precise value for ordinary viscous fluids. 

Further, if 𝑅𝑡𝑐 = 0
 
in equation (26), we obtained 𝑀𝑎𝑐 = 48, the exact value of the critical Marangoni 

number for ordinary viscous fluids [20]. 

4 Experimental Results 

The approach used in this paper successfully performed a two-stage classification of bugs reported from 
the execution of Chef cookbooks. Comparing various machine learning techniques and deep learning 
algorithms found that the deep learning CNN algorithm gives the highest accuracy score. Since the second 
classification layer depends on the first layer, having a high-accuracy model in the first layer is the most 
important aspect. Fig. 2 compares various classifiers in the first stage of classification. The graph in Fig. 2 
shows that CNN achieves the highest accuracy score of 97.73 percent compared to the other algorithms, 
whose accuracy score is less than 90 percent for the same data. The naïve Bayes algorithm yielded an 
accuracy of 85 percent. The decision tree algorithm classified 76 percent accurately compared to the 86 
percent of Random Forest. The performance of SVM surpassed that of the other machine learning 
algorithms with an accuracy of 87 percent. 

The critical eigenvalues 𝑅𝑡𝑐 and 𝑀𝑎𝑐 for various values of 𝑅𝑚, 𝑃𝑟, and |𝑄| are computed analytically. 

It is found that the stability characters of the system are free of 𝑀3. Significant features of these parameters 

are shown graphically in Figs. 2-8.  

In the existence of throughflow, magnetic field, magnetization and temperature at basic state will diverge 

from linear to nonlinear along a vertical direction, which has considerable influence on the stability (see 

Fig. 2). To review the impact of throughflow on ferroconvection, the dimensionless fundamental state 

distributions �̃�𝑏(𝑧),�̃�𝑏(𝑧) and �̃�𝑏(𝑧) for diverse values of |𝑄| are plotted graphically in Fig 2. From the 

figure, it is evident that increasing throughflow direction results in hefty deviations in these scatterings 

which in turn augment the instability in the ferrofluid layer. 
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In Figures 3 and 4, we have studied the convective instability only due to buoyancy forces. Fig. 3 and 4 

represent the deviation of 𝑅𝑡𝑐 versus |𝑄| for diverse values of 𝑅𝑚 (see Fig.3) and Prandtl number 𝑃𝑟 (see 

Fig. 4) in the absence of surface tension effects. From fig. 3 it is clear that as 𝑅𝑚 increases 𝑅𝑡𝑐  decreases 

as expected and makes the system more unstable. This is because additive support of destabilizing magnetic 

force enhances the onset of ferroconvection. An analogous state prevails in the absence of thermal buoyancy 

forces (i.e.𝑅𝑡 = 0), and this case corresponds to Marangoni ferroconvection (see Fig. 5). Further, the 

direction of throughflow does not change the system stability system and as |𝑄| increases both 𝑅𝑡𝑐 and 𝑀𝑎𝑐 

also increase. Fig.4 presents the deviation of  𝑅𝑡𝑐  versus |𝑄| for various values of 𝑃𝑟. The results show that 

in the absence of surface tension force, increasing in Prandtl number 𝑃𝑟 does not significantly affect the 

onset of ferroconvection. Fig. 6, shows that as 𝑃𝑟 increases, and 𝑀𝑎 decreases. Hence, its effect is to hasten 

the ferroconvection. 

Figure 7 shows convective instability with both buoyancy and surface tension forces. A plot 𝑅𝑡𝑐 versus 

𝑀𝑎𝑐 is shown in Fig.7 for different 𝑀1 with |𝑄| = 5 and 𝑃𝑟 = 10. From the graphical representation, it is 

clear that there is a strong coupling between 𝑅𝑡𝑐 and 𝑀𝑎𝑐 . When the surface tension forces are strong, the 

buoyancy force becomes negligible and vice-versa. Also, we observe that as 𝑀1 increases, the destabilizing 

magnetic force also increases and hence hastens the ferroconvection. Further, the curves for different 𝑀1 

converge to 𝑀𝑎𝑐 = 48  when 𝑅𝑡𝑐 = 0  demonstrating that it doesn’t affect Marangoni ferroconvection. 

Theoretically, the results support this behaviour (refer (26)). Fig. 8 shows that as |𝑄| increases both 𝑀𝑎𝑐 

and 𝑅𝑡𝑐 also increases. From the figure, we observe that increasing |𝑄| Stabilizes the system. Thus, it is 

observed that adjusting vertical throughflow can control the onset of ferroconvection. 

 

 

Figure 2: Distribution of basic profiles for different values of Q 
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Figure 3: Variation of 𝑅𝑡𝑐 against |𝑄| for different values of 𝑅𝑚 
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Figure 4: Variation of 𝑅𝑡𝑐 
against |𝑄| for different values of 𝑃𝑟 
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Figure 5: Variation of 𝑀𝑎𝑐 
against |𝑄| for different values of 𝑅𝑚 
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Figure 6: Variation of 𝑀𝑎𝑐 against |𝑄| for different values of 𝑃𝑟 
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5 Conclusion and Future Scope 

From the above study, we can conclude, 

(i) The basic state distributions 𝑇𝑏(𝑧), 𝐻𝑏
⃗⃗⃗⃗⃗⃗ (𝑧)  and 𝑀𝑏

⃗⃗ ⃗⃗ ⃗⃗ (𝑧)  are nonlinear in the presence of vertical 

throughflow  |𝑄| and it effect the stability significantly. 

(ii) The increase in the values of 𝑅𝑚  and 𝑃𝑟 is to speed up the ferroconvection. While, 𝑀3 does not 

have any effect on the ferroconvection. 

(iii) The effect of Peclet number Q, depending on throughflow, delays the inception of ferroconvection.  

(iv) Magnetic and buoyancy forces strengthen one another and augment the ferroconvection. 
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